Question	Scheme	Marks	AOs
1 (a)	$[Q_2 =] (5+) \frac{12}{15} \times 5$ or (use of $(n+1)$) $(5+) \frac{12.5}{15} \times 5$	M1	1.1a
	= 9 or 9.166 awrt 9.17	A1	1.1b
		(2)	
(b)	$\left[\sigma_{x}=\right]\sqrt{\frac{5675}{30}-\left(\frac{355}{30}\right)^{2}}=\sqrt{49.14}$	M1	1.1a
	= <u>awrt 7.01</u>	A1	1.1b
	Accept $\left(s_x = \sqrt{\frac{5675 - 30\left(\frac{355}{30}\right)^2}{29}} = 7.1294 \right)$	(2)	
(c)	$x = \frac{t - 15}{2}$ or $t = 2x + 15$	M1	3.1b
	Median = $2'$ "9"+ 15 = 33 (allow awrt 33.3 from "9.17" in (a))	Alft	1.1b
	Sd = 2' "7.01" = 14.02 (awrt 14.0) [allow awrt 14.3 if s used]	Alft	1.1b
		(3)	
(d)	The median time is "33" and "33" < 35 so 50% (30) should finish in 35 minutes. ALT Probability of being < 35 mins is $\frac{18}{30} \setminus \frac{18}{30}$, $60 = 36$	M1	2.4
	applicants to choose from.		
	It is likely that they will fill all 25 positions [providing those offered accept]	A1	2.2b
		(2)	
Notes:		(9 m	arks)
	or a suitable fraction $\times 5$ (ignore end points) or 9 or awrt 9.17 if using $n + 1$		
	or a correct expression for \overline{x} and s_x or s_x		
	or awrt $s_x = 7.01$ or $s_x = awrt 7.13$		
M A1ft: ft	For realising $x = \frac{t-15}{2}$ and then rearranging to get a correct equation with a ybe implied by a correct answer for the median of t. at their median their s_x or s_x . NB using s gives awrt14.3	h <i>t</i> as the s	ubject
	or a suitable comparison following through their value for the median of	<i>t</i> .	
A1: A c	correct conclusion in context following through their value for the media	an of <i>t</i> .	

PMT

8MA0/02: AS Paper 2 Part A Statistics Mark scheme

(b) $H_0: p = 0.$ $Y \sim B(40, 0)$ $P(Y^3 \ 16)$ = 0.0262 > 0 significan proportion (c) There is e eggs has i Notes: (a)M 1: For dealing wi A1: awrt 8.44 (from	$\frac{\text{Method 1}}{\text{Method 1}}$ = 1- P(Y £ 15) = 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n		M1 A1 (2) B1 M1 M1 M1 A1 A1cso	1.1b 1.1b 2.5 3.3 1.1b 1.1b 2.2b
Y~B(40, 0) $Y \sim B(40, 0)$ $P(Y^3 \ 16)$ =0.0262 > 0significan proportion(c)There is e eggs has iNotes:(a) M 1: For dealing with A1: awrt 8.44 (from	25 $H_1: p > 0.25$ (b) 0.25) Method 1 = 1- P(Y £ 15) = 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	both correct in terms of p or p)	(2) B1 M1 M1 M1 A1	2.5 3.3 1.1b
Y~B(40, 0) $Y \sim B(40, 0)$ $P(Y^3 \ 16)$ =0.0262 > 0significan proportion(c)There is e eggs has iNotes:(a) M 1: For dealing with A1: awrt 8.44 (from	$\frac{\text{Method 1}}{\text{Method 1}}$ = 1- P(Y £ 15) = 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	Method 2 $P(Y^3 \ 17) = 0.0116$ $P(Y^3 \ 18) = 0.0047$ $CR \ Y^3 \ 18$ not in the critical region or 16 is not no significant evidence that the	B1 M1 M1 M1 A1	3.3 1.1b
Y~B(40, 0) $Y \sim B(40, 0)$ $P(Y^3 \ 16)$ =0.0262 > 0significan proportion(c)There is e eggs has iNotes:(a) M 1: For dealing with A1: awrt 8.44 (from	$\frac{\text{Method 1}}{\text{Method 1}}$ = 1- P(Y £ 15) = 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	Method 2 $P(Y^3 \ 17) = 0.0116$ $P(Y^3 \ 18) = 0.0047$ $CR \ Y^3 \ 18$ not in the critical region or 16 is not no significant evidence that the	M1 M1 M1 A1	3.3 1.1b
P(Y^3 16) P(Y^3 16) = 0.0262 > 0 significan proportion (c) There is e eggs has i Notes: (a)M 1: For dealing wi A1: awrt 8.44 (from	$\frac{\text{Method 1}}{= 1 - P(Y \pounds 15)}$ = 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	$P(Y^{3} \ 17) = 0.0116$ $P(Y^{3} \ 18) = 0.0047$ $CR \ Y^{3} \ 18$ not in the critical region or 16 is not no significant evidence that the	M1 A1	1.1b
(c) There is e eggs has i	$= 1- P(Y \pounds 15)$ $= 1- 0.9738$ $= 0.0262$ $0.01 16 < 18 \text{ or } 16 \text{ is r}$ t, accept H ₀ . There is n	$P(Y^{3} \ 17) = 0.0116$ $P(Y^{3} \ 18) = 0.0047$ $CR \ Y^{3} \ 18$ not in the critical region or 16 is not no significant evidence that the	A1	1.1b
(c) There is e eggs has i	= 1- 0.9738 = 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	$P(Y^{3} \ 18) = 0.0047$ $CR \ Y^{3} \ 18$ not in the critical region or 16 is not no significant evidence that the	A1	1.1b
(c) There is e eggs has i	= 0.0262 0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	CR Y ³ 18 not in the critical region or 16 is not no significant evidence that the		
(c) (c) (c) (c) (c) (c) (c) (c)	0.01 16 < 18 or 16 is r t, accept H ₀ . There is n	not in the critical region or 16 is not no significant evidence that the		
(c) There is e eggs has i	t, accept H ₀ . There is n	no significant evidence that the		2.21
eggs has i eggs has i Notes: a)M 1: For dealing wi A1: awrt 8.44 (from				1
votes: (a)M 1: For dealing wi A1: awrt 8.44 (from			(5)	
(a) M 1: For dealing wi A1: awrt 8.44 (from		rtion of people who bought organic 0.0262 or 16 is in critical region]	B1ft	2.2b
(a) M 1: For dealing wi A1: awrt 8.44 (from			(1)	
a)M 1: For dealing wi A1: awrt 8.44 (from			(8 r	narks
A1: awrt 8.44 (from				
A1: awrt 8.44 (from	th P(5f. $X < 12$) they n	need to use the cumulative prob. Fun	ction on the	calc.
· · · · · · · · · · · · · · · · · · ·		I		
	es correct using p or p	and 0.25 is to be used. This may be stated or us	sed.	
-	ng 1- $P(Y \pm 15)$ or 1- I			
a correct CR o	or $P(Y^3 \ 17) = 0.0116$ and	nd $P(Y^3 \ 18) = 0.0047$		
A1: awrt 0.0262 or	CR Y^{3} 18or $Y > 17$			
•		rrect conclusion in context to includ	e the idea of	
proportion and inc. (c) B1ft: For 0.0262 <	1 1 0 1	organic		

and a correct contextual conclusion.

Question	Scheme	Marks	AOs
3(a)	Pressure outliers are <1004.75 and >1018.75 Rainfall outliers are (<-3.05) and >82.95	M1	2.1
	p = 1019 and 1022 are outliers w = 102.0 is an outlier	Alcso	1.1b
		(2)	
(b)	e.g. was a negative correlation, now no (zero) correlation	B1	2.2b
		(1)	
(c)	 e.g. there are a lot of zeros for rainfall in Perth and there are none in the sample. or e.g. these are the highest figures and you are unlikely to get these if the sample was random. 	B1	2.4
		(1)	
(d)	On average, an increase of 1 hPa in daily mean pressure results in a decrease of 0.223 mm in daily rainfall.	B1	3.4
		(1)	
(e)	Unreliable, as the large data set does not cover December.	B1	2.4
		(1)	
	·	(6 n	narks
Notes:			
· /	least one correct boundary point h upper boundary points and correct conclusions		
(b) B1ft: A	suitable description of correlation before and after.		
(c) B1: For	a comment that supports the idea that the sample is unlikely to be rando	om.	
(d) B1: Fo	or a suitable description of the rate : rainfall per number of hPa with refer	rence to fig	gures
e) B1: For	r correct conclusion with a reason explaining why it would be extrapola	tion.	

NB: B0 For out of range, extrapolation o.e. on their own without a reason.

Question	Scheme	Marks	AOs
4 (a)	<i>S</i> and <i>A</i> since there is no intersection between <i>A</i> and <i>S</i> or the probability of <i>S</i> and <i>A</i> happening is zero	B1	1.2
		(1)	
(b)	$(0.1+ p)' \ 0.25 = 0.1 \ [p = 0.3]$	M1	3.1b
	q = 0.15 or $1 - q = 0.85$	M1	1.1b
	r = 1 - p'' - q'' - 0.25	M1dd	3.1b
	= 0.3	A1	1.1b
		(4)	
(c)	Independent since $0.25 \times "0.2" = 0.05$	B1	2.2a
		(1)	
(d)	The teacher's belief would appear not to be justified as <i>D</i> and <i>S</i> are independent	B1ft	2.4
		(1)	
		(7 n	narks
lotes:			
a) B1: For	S and A and a sensible reason		
	or forming a correct equation in terms of p using the information given. Triting or using $q = 0.15$ or $1 - q = 0.85$		
to	dependent on both previous M marks being awarded. For using their vators form a correct equation to enable them to find r	lues for <i>p</i> a	nd q
A1: ca		o piacos of	
	es and a suitable reason to support their answer bringing together the twation to draw the correct conclusion	o pieces of	
d) D1. A	correct comment following their answer to part (c) with reference to the	toophars he	liof

Question	Scheme	Marks	AOs
1(a)	Use of $s = vt - \frac{1}{2}at^2$	M1	2.1
	$19.6 = 4v - \frac{1}{2} \cdot 9.8 \cdot 4^2$	A1	1.1b
	$v = 24.5 \text{ or } 25 \text{ (m s}^{-1})$	A1	1.1b
		(3)	
(b)	$0 = 14.7^2 - 2^{-5} 9.8h$	M1	2.1
	h = 11.0 or 11 (m)	A1	1.1b
		(2)	
(c)	New value of speed would be lower.	B1	3.5a
		(1)	
		(6 n	narks)
Notes:			
	•	uations and	d then
(b)			
-	ete method to find <i>h</i>		
A1: 11.0 or	r 11 (m)		
(c) B1: New va	lue of speed will be lower		

8MA0/02: AS Paper 2 Part B Mechanics Mark scheme

Question	Scheme	Marks	AOs
2(a)	$V \longrightarrow 120$ Shape	B1	1.1b
	V, 120	B1	1.1b
		(2)	
(b)	$\frac{1}{2}$ 120V = 1500	M1	3.1b
	V = 25	A1	1.1b
		(2)	
(c)	Area of triangle = Distance travelled = $(\frac{1}{2} + 120V) = 1500$	B1	2.4
	This does not depend on <i>T</i> so <i>T</i> can take any value where $0 < T < 120$	B1	2.4
		(2)	
(d)	Include a constant speed phase in the motion	B1	3.5c
		(1)	
		(7 r	narks)
Notes:			
-	e, starting at the origin with base on axis and apex between $t = 0$ and $t = 0$ 20 correctly marked (allow a delineator)	t = 120	
(b) M1: Identif A1: V = 25	ying correct strategy to solve problem to give equation in V only		
	Striangle only depends on base and height an take any value $0 < T < 120$		
-	lude a <i>smooth</i> change from acceleration phase to deceleration phase. ve a variable acceleration and/or deceleration phase		

Question	Scheme	Marks	AOs
3(a)(i)	Equation of motion for <i>P</i> with usual rules	M1	3.3
	$T - 1.5 = 0.4 \times 2.5$	A1	1.1b
	T = 2.5 (N)	A1	1.1b
(ii)	Equation of motion for Q with usual rules	M1	3.3
	10M - T = 2.5M	A1	1.1b
	M = 0.33	A1	1.1b
		(6)	
(b)	$2 = \frac{1}{2} \times 2.5t^2$	M1	3.4
	t = 1.3 (s)	A1	1.1b
		(2)	
(c)	e.g. the mass of the rope	B1	3.5b
		(1)	
	·	(9 n	narks)
Notes:			
A1: Corr A1: Corr (a)(ii) Keso M1: Reso A1: Corr	blve horizontally for P rect equation rect answer. Ignore units blve vertically for Q rect equation		
A1: Corr (b)	rect answer		
M1: Use	$s = ut + \frac{1}{2}at^2$		
(c) B1: e.g. t	Ignore units he pulley may not be smooth, air resistance		

Question	Scheme	Marks	AOs
4 (a)	$s = \oint_0^1 16 - 3t^2 \mathrm{d}t$	M1	1.1a
	$\frac{0}{\left[16t - t^3\right]_0^1}$	A1	1.1b
	=15 (m)	A1	1.1b
		(3)	
(b)	$16 - 3t^2 = 0$	M1	3.1b
	$t = \sqrt{\frac{16}{3}} \text{ oe}$	A1	1.1b
		(2)	
(c)	$16t - t^3 = 0$	M1	3.1b
	$t(16 - t^2) = 0$	M1	1.1b
	t = 4	A1	1.1b
		(3)	
		(8 n	narks)
Notes:			
A1: Corr A1: 15 ((b) M1: Identity	mpt to integrate, one power going up rect integral and limits or indefinite integral with $C = 0$ and $t = 1$. (m) tifying correct strategy to solve problem of finding direction change by e	quating v t	o 0
and solving A1: corre	for t ect answer – any surd or decimal equivalent to at least 2 sf		
	ifying correct strategy to solve problem by using use $s = 0$ and equating to npt to solve	heir integr	al to 0